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Abstract

Object detection is a fundamental problem in computer

vision. Impressive results have been achieved on large-

scale detection benchmarks by fully-supervised object de-

tection (FSOD) methods. However, FSOD performance is

highly affected by the quality of annotations available in

training. Furthermore, FSOD approaches require tremen-

dous instance-level annotations, which are time-consuming

to collect. In contrast, weakly supervised object detection

(WSOD) exploits easily-collected image-level labels while

it suffers from relatively inferior detection performance. In

this paper, we study the effect of missing annotations on

FSOD methods and analyze approaches to train an ob-

ject detector from a hybrid dataset, where both instance-

level and image-level labels are employed. Extensive ex-

periments on the challenging PASCAL VOC 2007 and 2012

benchmarks strongly demonstrate the effectiveness of our

method, which gives a trade-off between collecting fewer

annotations and building a more accurate object detector.

Our method is also a strong baseline bridging the wide gap

between FSOD and WSOD performances.

1. Introduction

Object detection is a fundamental and essential prob-

lem yet to be deciphered in computer vision. Impres-

sive results have been achieved on large-scale detection

benchmarks by fully-supervised object detection (FSOD)

methods, especially with the convenience of deep convo-

lutional neural networks (CNNs) [21, 15], whose success

mainly benefits from the flexibility of deep learning mod-

els and an abundance of instance-level annotations in ex-

tensive datasets [32, 25]. However, annotating such large-

scale datasets is expensive and time-consuming. More im-

portantly, the performance of FSOD is profoundly affected

by the quality of these annotations. For instance, imperfect

bounding box annotations or missing annotations of objects

in training images can have a drastic impact on FSOD per-

formance. This will be the noteworthy focus of our paper.
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Figure 1: The Mean Average Precision (mAP) for one WSOD

detector and four classical FSOD detectors training under dif-

ferent instance-level missing label rates (Mr = 0 : 0.1 : 0.9)

of the training dataset. The performance of FSOD detectors

is largely affected by the amount of missing annotations. These

models are trained on VOC2007 train-val set and evaluated on the

VOC2007 test dataset.

When collecting large-scale object detection datasets,

the missing label problem (i.e. some instance-level bound-

ing box annotations are missing in some images) does arise

and it becomes more prevalent when the dataset grows in

size (both in the number of training images and object

classes). Fig. 1 exhibits the detection performance of a stan-

dard FSOD object detector at different instance-level miss-

ing label rates (Mr). This value shows the proportion of

discarded annotations over all the annotations in the orig-

inal dataset. Ranging from 0 to 0.4, FSOD performance

decreases slightly. However, the performance drops signif-

icantly when Mr is larger than 0.5. Nevertheless, efforts

to identify the effects of this problem on detector perfor-

mance are not sufficient to produce considerable outcomes.

As such, it becomes worthwhile to develop object detectors
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that can handle the missing label problem.

In this paper, we firstly investigate the robustness of cur-

rent CNN based detectors trained on datasets with differ-

ent missing label rates. After analyzing the limitations of

these existing FSOD detectors and realizing that state-of-

the-art WSOD methods register much lower detection per-

formance, we propose a hybrid supervised learning frame-

work for missing label object detection. This framework

firstly uses a WSOD detector[41] as a teacher model to gen-

erate pseudo labels. Then these labels are merged with ex-

isting annotations to train a novel object detector. We com-

pare the object prediction with the images label and intro-

duce loss functions generally used in weakly supervised ob-

ject detection. Also, we show that repeated refinement is an

efficient way to improve the model performance.

To sum up, we make the following three contributions

for the missing label object detection problem.

(1) We evaluate the robustness of mainstream FSOD

methods to varying rates of missing labels, varying object

categories (Sec. 4.2) and different object sizes (Sec. 4.3).

We conclude that the performance of all these FSOD meth-

ods drops more significantly as the missing rate increases,

thus, indicating that current FSOD detectors are less robust

to missing annotations in the training dataset.

(2) We compares different setups in a novel teacher-

student framework that combines image-level and instance-

level information to train a robust end-to-end detection

model. This framework inherits the advantages of both

weakly- and fully-supervised detection methods while

avoiding their drawbacks. Both the compared FSOD and

WSOD methods carry out no better performance than our

proposed detector on VOC2007 and VOC2012 with ten dif-

ferent missing rates (in Sec. 4.5).

(3) Our framework gives a trade-off between collecting

large-scale fully-annotated dataset and training a better ob-

ject detection model. Experiments in Sec. 4.4 reveals the

highly practical value of our work to do object detection.

2. Related Work

2.1. Fully-Supervised Object Detection

With the development of deep learning, many CNN

based methods have been proposed to solve the FSOD prob-

lem, such as Fast RCNN [13], Faster RCNN [38], SSD [26],

YOLO2 [29], and many of their variants [1, 10, 14, 24, 5,

43, 2]. Faster RCNN [38] is a typical proposal based de-

tection CNN, which balances both detection performance

and computational efficiency. This method has become

the de facto framework for fully-supervised object detec-

tion due to its plasticity and flexibility. YOLO2 [29], on

the other hand, achieves real-time detection by predicting

bounding boxes in a dense manner, specifically for each pre-

defined region in the image. Fully-supervised methods have

achieved impressive results in object detection. However,

training them required the collection and curation of large-

scale instance-level bounding-box annotations, which is ex-

pensive and time-consuming. As we pointed out in Fig. 1,

the performance of FSOD detectors is largely affected by

the amount of missing annotations. In our hybrid learning

framework, we also take Faster-RCNN as our basic model,

but any state-of-the-art detection model such as [20, 7, 27]

can be used and compared in our study.

2.2. Weakly Supervised Object Detection

If there are no instance-level labels available in training,

we can resort to training a weakly-supervised object de-

tector. Most classical approaches treat Weakly Supervised

Object Detection (WSOD) as a Multiple Instance Learning

problem [33, 22, 16, 31, 3, 18, 40, 39, 28, 42]. For example,

Bilen et al. [4] present a weakly supervised deep detection

network (WSDDN), which selects positive samples by mul-

tiplying the score of recognition and detection, and updates

the scores by comparing the predicted positive samples and

image level annotation. Others focus on improving the op-

timization strategy in training. Tang et al. [35, 34] design

an online instance classifier refinement (OICR) algorithm to

refine the predicted object positions and alleviate the local-

optimum problem that plagues WSDDN.

The different set-ups in out hybrid learning framework

are inspired by weakly supervised learning methods. We

combine WSDDN [4] with a fully-supervised detection net-

work to generate the positive samples and consider instance

level annotations in OICR algorithms [35] to enhance our

missing label object detector.

2.3. Hybrid Supervision and Pseudo Labels

Hybrid supervised learning aims to use different level of

supervision to train a detection model. This topic is draw-

ing more attention in segmentation problem [23, 17], which

requires expensive pixel level annotation. In object detec-

tion domain, people use high scoring predicted bounding

boxes generated by a weakly supervised detector as pseudo

labels [36, 11, 41, 9, 37, 8]. Pseudo label method has been

recently used in a fully-supervised setup to compensate for

the absence of all instance-level box annotations. The cas-

cade detector in Diba’s work [11] and OICR [35] both use

pseudo object labels to train Fast-RCNN and achieve em-

inent WSOD performance. Mining pseudo labels can also

increase the success of fully-supervised detectors. Zhang

et al. [41] determine the most accurate bounding box using

pseudo ground-truth excavation (PGE) and pseudo ground-

truth adaption (PGA) algorithm from predictions.

Apply this method on the hybrid supervised learning do-

main, our innovation is to generate pseudo labels from dif-

ferent levels of annotations and update the generator in ev-

ery training cycle.
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Algorithm 1 Frequency based instance-level annotation

sampling. We randomly drop Mr of the annotations of each

category based on the number of instance level annotations

and missing rate Mr.

Input: missing rate Mr, number of categories M , number

of images N ;

1: for each annotation j in each image i do

2: find annotation category k;

3: append annotations to objLabels[k][i];
4: end for

5: for each category k do

6: sample Mr of annotations from objLabels[k][:]
(without replacement )

7: remove the sampled data from objLabels[k][:];
8: end for

9: save labeled image index as ml ImageList;

10: save objLabels[k][:] in PASCAL VOC standard as

annotation mr;

Output: annotation mr, ml ImageList.

3. Approach

In this section, we give a comprehensive description of

our hybrid supervised learning framework for the missing

instance-level label object detection problem. To our best

knowledge, no attention has been paid on this problem, and

there is no standard instance-level missing object detection

training dataset. Therefore, we firstly describe how to mod-

ify the standard detection benchmarks into such kind of

dataset under different instance-level missing rates. Then,

we present each component of our proposed detector in de-

tail. A brief overview of our framework is shown in Fig. 2.

3.1. Missing Label Datasets

Alg. 1 presents how to constructs the instance-level miss-

ing label dataset from any fully supervised dataset for a

given missing rate mr. Firstly, we collect all instance-level

labels for each category in all images in the dataset. And

then we randomly drop the instance-level labels for each

category with the ratio mr. Meanwhile, we also record im-

ages without any instance-level labels after dropping, which

will not be sampled when training the FSOD models. The

reason is that no positive training examples exist in these

images, which will make the detector bias to the back-

ground and degrade its performance. However, our detector

can mine valuable information from these images to boost

performance. Note that, in this paper, the missing label ob-

ject detection dataset is based on PASCAL VOC2007/2012.

3.2. Basic Hybrid Supervised Architecture

The missing label dataset is hybrid-supervised by both

instance- and image-level annotations. We use a teacher-

student learning architecture to solve the hybrid super-

vised learning problem. Our teacher detector is a decent ob-

ject detection model that forward-passes an image and gives

pseudo label for object categories and localization predic-

tions, and the student network can be an off-the-shell object

detector such as[30, 29], or an adapted one for the missing

label background (Sec. 3.3).

In the learning process, the teacher detector is fixed

and the student detection model is trained from both in-

stance level labels and post-processed pseudo labels. We

stack confident predictions from the teacher detector and

the ground truth object labels, and apply Non-Maximum

Suppression (NMS) for the object categories that appear in

image level supervision. This process removes three type

of predictions. The first type is the false alarms whose cat-

egory contradicts with images labels. Also, the predictions

which have a small positive confidence score is discarded to

collect a high precision training data. The NMS operation

also removes the unnecessary predictions which are similar

to any instance labels on both classification side and local-

ization side.

We also compared two different setups for the teacher

model. (1) For the simple setup, this model is a decent

object detector and is learned from only weakly annota-

tions. It performs well at classification tasks for the most

distinguishable part of the object. The student model can

inherit the abilities to find the correct object classes from

the teacher model, and also get improved on localization

accuracy from the remained instance level annotations. (2)

Another way to design the teacher model is to use the hy-

bridly learned object detector. Each time we get a high-

performance object detection model, it takes the place of

teacher model and providing more accurate pseudo labels.

When we update the teacher model, we reset the student

model to the original weights.1

3.3. More Adaptions to Missing Label Training

We also adapt two main modules in WSOD field into our

hybrid supervised learning framework. The first module is

a Multiple Instance Detection (MID) network [4] which in-

troduces loss function for the images-level labels. And the

second Instance Classifier Refinement (ICR) network [35]

further improve the localization accuracy from more reli-

able regression targets.

In the following discussion, we assume an image has

both image-level labels y=[y1, . . . , yC ] 2 {0, 1}C and

instance-level labels P=[p1, . . . ,pL] 2 R
L⇥5. Here C de-

notes the number of object categories while L is the num-

ber of labelled objects in the image. In addition, it also

has L0 pseudo labels from the teacher model, denoted as

P 0=[p0

1, . . . ,p
0

L0 ] 2 R
L0

⇥5.

1The VGG16 weights are pretrained from ImageNet, and the remained

are initialized randomly.
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Figure 2: Illustration of the proposed Hybrid Supervised Architecture with Adaptions. Given an image collection with image-level

labels and partial instance-level labels, we firstly use W2F [41] to generate pseudo label information (e.g. blue rectangles in the top image.)

Then we combine the ground-truth object bounding boxes (e.g. red rectangles in the top image), pseudo information and image-level labels

to train an end-to-end object detection network. The detection network can have three modules: RPN, MID and ICRs. RPN provides

proposals as in most two stage methods. MID predict region detection results, and it is supervised by both level of annotations. ICRs

further refine the learning target for each proposals. When the detection network is ready, it takes the place of the teacher models and

generates more accurate pseudo label (e.g. blue bounding boxes in the bottom image) , the updated instance-level pseudo bounding boxes

are utilized to retrain the model.

Learn from Image- and Instance-Level Labels. We

modify the training process of the detection model such that

it can learn from both image level and instance level labels.

In weakly supervised learning, n object proposals are

used to extract n feature vectors. These feature vectors pass

through classification and localization sub-networks and get

two C⇥|R| matrices XC and XD, respectively. Inspired by

[4], the scores of each proposal (subject to C classes) can

be presented as the element-wise production of the softmax

of the two matrices. XR = σcls(X
C) � σdet(X

D). Given

an image, the c-th class prediction score [p]c 2 R can be

obtained by summation of XR for all proposals, as Eq. 1 2.

Cross entropy loss is used to regress the module.

[p]c=
P|R|

r=1[σcls(X
C)� σdet(X

D)]c,r (1)

We also changed the training process on the proposal

classification and object boundary regression to learn from

ground-truth and pseudo instance labels differently. A pos-

itive proposal as the regions which have a high IOU with

any (ground truth or pseudo) instance label, while a neg-

ative proposal must has a small IOU with either instance

labels. Moreover, we only regress the proposal boundaries

if it has a high IOU with ground truth instance label. In an-

2the subscripts are used to show the element of a vector or a matrix.

other words, we only use ground truth bounding boxes to

regress locations, while avoiding pseudo label giving inac-

curate bounding boxes. During training, the modified MID

loss function can be formulated in Eq. 2:

LossMID=
PC

c=1 Llab(yc, pc)+
α

Ncls

P
p∗

2P̂
Lcls(p,p

⇤)+
β

Nreg

P
p∗

2P Lreg(p,p
⇤).

(2)

Here, P̂ = P [P 0 is the union of true and pseudo instance

labels. Both Llab and Lcls are cross-entropy losses and Lreg

is a smooth l1 loss. Ncls and Nreg are the number of pro-

posals used in classification and regression, respectively.

Refinement Layers The key idea of ICR is to integrate

the basic detection network and the multi-stage instance-

level classifier into a single network. We set-up this module

almost the same as in Tang’s work[35]. For the k-th refining

subbranches in ICR, each of them classifies r-th proposal

as x
(k)
r 2 R

C+1. The label y
(k)
r for r-th proposal in k-th

subbranch is the most confident predictions from k � 1-th

subbranch. Differently, if the instance label exist, it is also

the training target for all of the k branches.

For each subbranch in ICR, the weighted cross-entropy
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loss (classification loss) is used as in Eq.3:

LossICR=
1

|R|

KX

k=1

|R|X

r=1

Lcls(x
(k)
r ,y(k)

r ,w(k)
r ), (3)

where w
(k)
r denotes the confidence vector, y

(k)
r is training

target, and K is the number of refinement layers.

Finally, we train our end-to-end student model by com-

bining the loss functions from the above two modified mod-

ules and Region Proposal Network (RPN), as in Eq.(4).

LossTotal=LossRPN + LossMID + LossICR. (4)

LossRPN is a regular RPN loss as in [30].

4. Experiments and Analysis

In this section, first, we experimentally test the classical

FSOD detectors under different instance-level label missing

rates, which demonstrates the weaknesses of current FSOD

methods. Then, we verify the effectiveness of each com-

ponent of our proposed detector, which is designed to deal

with the instance-level missing problem. Finally, we com-

pare the proposed method with other typical detectors on

the public detection benchmark (PASCAL VOC datasets)

and present some qualitative results.

4.1. Experimental Setup

Datasets and Evaluation Metrics We construct the

missing label datasets based on COCO [25] and PASCAL

VOC datasets [12]. For the COCO[25] experiments, we

only consider four typical classes over 80 classes of object

labels: dog, table, book and cow. To investigate the ro-

bustness of current detectors, we generate the missing label

training set with missing rates ranging from 0.0 to 0.9 with

step size 0.1 on those four categories, and also collect the

object labels corresponding to the other 76 classes. After

training a detector with the ability to detect 80 classes of ob-

jects, the Average Precision is reported for the typical four

classes to show model performance. Also, we use PASCAL

VOC datasets [12] to do more analysis on the missing label

problem and investigate the possible solutions. PASCAL

VOC 2007 and 2012 comprise of 9963 images and 22531

images respectively, which both include 20 categories of

objects. To generate dataset with missing labels, we pro-

cess the data for all the 20 categories as in COCO. We use

VOC2007 and VOC2012 train-val sets to train our models,

and evaluation is on the corresponding test datasets. Af-

terwards, the mean average precision (mAP) is utilized to

evaluate the performance of the detectors.

Implementation Details Our framework employs the

VGG16 model pre-trained on ImageNet [32] as the back-

bone network. In our training setting, the total number of

iterations is set to 70k for VOC2007 and 80k for VOC2012,

Figure 3: Effect of the missing rate of instance-level labels

on detection performance. (left) shows the average precision for

four COCO[25] classes with different missing label rates. The re-

sults are given by Faster-RCNN[6] with Mr from 0.0 to 0.9 by

step 0.1. (right) plots statistics the instance number and image

number of the four classes. Number are shown in log scale. Paren-

theses after each class gives the number of instances per image.

and the learning rate is 0.001 for the first 40k iterations and

0.0001 in the remaining iterations. Grounded on Chen’s

work[6] in Tensorflow, we design the hybrid learning part

that will be publicly accessible later.

More specifically, we set three layers on the ICR network

(i.e. K=3). The negative example of RCNN is the predic-

tions which have Intersection Over Union (IOU) of ground-

truth or pseudo instance-level label between 0.1 and 0.5.

4.2. The Effect of Missing Instance-Level Labels

To verify the robustness of current FSOD methods, we

re-train and evaluate four typical FSOD models on the

missing label dataset under different missing ratio: RCNN,

Faster-RCNN, YOLO and SSD. Fig. 1 displays their mean

Average Precision (mAP) on the PASCAL VOC2007 test

sets. The performance of all FSOD methods drops signif-

icantly as the missing rate increases, which demonstrates

that the performance of FSOD techniques is considerably

affected by the quality of the training set. More surpris-

ingly, the performances of Faster-RCNN, YOLO and SSD

is inferior to the weakly-supervised method[41] when the

missing rate Mr is higher than 0.7. From the experiments,

we can conclude that current FSOD detectors are very sen-

sitive to the quality of the training dataset.

As discussed above, different models are tested on our

dataset, and we also run Faster-RCNN in another COCO

dataset. Fig. 3 shows the same AP pattern when Mr is in-

creasing. We acquire more interesting discoveries in the

larger dataset investigation. (1) A small Mr can hardly af-

fect model performance. In COCO dataset, we do not ob-

serve a clear decrease when Mr < 0.4. (2) Object class that

appears as a crowd is more sensitive to Mr. AP for cow

class falls faster than table class, and there are always mul-

tiple cows in an image but with only one table. We expect

more emphasis laid on this phenomena by researchers.
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Figure 4: Model performance when we use Teacher-Student

Model, Student Model Adaption and Repeated Teaching

among all the Mrs. The final mAPs with full modules are higher

than both FSOD and WSOD methods.

Cls. FSOD WSOD T-S MID* ICR* Repeated

aero 49.8 63.5 58.0 59.2 60.7 62.7

bike 66.4 70.1 75.9 74.6 72.2 76.0

bird 56.3 50.5 52.1 50.9 52.1 58.9

boat 37.7 31.9 37.6 38.8 41.0 47.0

bottle 33.0 14.4 32.7 31.9 33.7 42.4

bus 60.6 72.0 69.5 68.3 68.4 70.2

car 66.5 67.8 74.5 74.2 74.2 75.8

cat 72.4 73.7 76.1 75.3 75.6 80.7

chair 31.8 23.3 31.7 31.9 31.7 42.0

cow 46.5 53.4 65.9 66.5 68.0 71.0

table 46.2 49.4 47.0 43.8 47.5 62.9

dog 63.8 65.9 68.7 70.2 70.1 76.8

horse 71.1 57.2 73.5 74.5 75.7 77.4

mbike 64.0 67.2 67.9 70.4 73.7 72.5

person 62.3 27.6 56.2 55.2 56.7 67.7

plant 22.8 23.8 23.3 27.0 27.3 31.7

sheep 50.2 51.8 61.0 60.5 62.5 62.3

sofa 44.5 58.7 55.2 53.8 57.0 62.9

train 56.3 64.0 61.6 64.5 69.1 73.4

tv 51.1 62.3 62.4 65.7 65.0 70.7

mAP 52.7 52.4 57.5 57.9 59.1 64.2

Table 1: Model performance with different modules when Mr

is fixed to 0.7. When we sequentially add modified MID, add

modified ICR and use Repeated ”Teaching” on the basic hybrid

supervised architecture (S-T), we get increasing AP on most of

the classes. The final APs with full modules are higher than both

FSOD and WSOD methods.

4.3. Normal Object vs. Small Object

Since small objects are often missed, therefore, we in-

vestigate the effect of missing small instance-level labels

on the detector’s performance. To build this kind of dataset,

(1) we compute the mean area (width ⇥ height) of all in-

stances in each category in PASCAL VOC 2007; (2) for an

instance whose area is smaller than the average, we discard

its bounding box and only keep its image label. By doing

this, around 30% percent of bounding boxes are removed

Table 2: The affect of missing small scale instance-level ob-

jects. We compare both regular FSOD model and our proposed

method in three dataset: fully-labeled dataset (Fully), missing la-

bel dataset at Mr = 0.3 and missing small label dataset (Small).

The last two datasets have similar amount of annotations.

Fully Mr@0.3 Mr@0.3 Small Small

Model FSOD FSOD Hybrid FSOD Hybrid

mAP 71.3% 68.3% 68.8% 45.3% 57.9%

and only large object instances remain.

Table 2 shows the performance of standard Faster-

RCNN and our hybrid learning method on both normal

missing label dataset (Mr = 0.3) and the small miss-

ing label object dataset (Small). From the table, we can

see that the Faster-RCNN trained on small scale missing

dataset shows significantly performance drop (45.3% vs.

71.3%) compared to the model trained with fully-annotated

dataset. This demonstrates that Faster-RCNN are very sen-

sitive to the small scale install-level object missing problem.

Compared to Faster-RCNN, our proposed method registers

nearly 12.6% improvement (57.9% vs. 45.3%), from which

we can conclude that our method is more robust to the small

scale object missing problem.

4.4. More Comparison to Other Methods

The proposed hybrid supervised method strives a bal-

ance between labelling images and obtaining a more ac-

curate detection model. We compare this method with the

mainstream FSOD and WSOD methods in Table 3 and 4.

Comparison at Different Mr Table 3 shows AP perfor-

mance on the VOC 2007 test set. The central block of the ta-

ble shows our results in five different missing rate from 0.1
to 0.9. Our method achieves outstanding performance from

61.9% to 70.7% on different missing rate, which is between

our compared fully-supervised object detection methods

and weakly supervised models. Our method has better ro-

bustness when missing rate is small. For example, if the

missing rate varies from 0.1 to 0.3, model performance de-

creases 1.2 percent. However, if the Mr decreases from 0.9
to 0.7, our mAP increases 3.9 percentage. Bounding boxes

information is efficiently used with high Mr.

Table 4 lists our performance in mAP on the PASCAL

VOC 2012 test set. These models are trained on PASCAL

VOC 2012 train-val set only. On the left side of the table,

we compare our method with OICR [35] and W2F [41].

Since our approach is based on Faster-RCNN, we compare

it with Fast-RCNN [13] and Faster-RCNN [30] on the right

side. Our baseline method successfully bridges between the

gap in performance between WSOD and FSOD. Due to the

flexibility of our method, the student detector can be taken

to be any state-of-the-art FSOD detector.

Comparison with WSOD The first block in Table 3

compares our model to WSOD methods. The reason for the
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Table 3: Average Precision of FSOD, Missing Label Object Detection and WSOD. All of them are trained/tested on

VOC2007 train-val/test dataset.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Jie, 2017 [18] 52.2 47.1 35.0 26.7 15.4 61.3 66.0 54.3 03.0 53.6 24.7 43.6 48.4 65.8 06.6 18.8 51.9 43.6 53.6 62.4 41.7

Krishna, 2016 [19] 53.9 - 37.7 13.7 - - 56.6 51.3 - 24.0 - 38.5 47.9 47.0 - - - - 48.4 - 41.9

Tang, 2017 [35] 65.5 67.2 47.2 21.6 22.1 68.0 68.5 35.9 5.7 63.1 49.5 30.3 64.7 66.1 13.0 25.6 50.0 57.1 60.2 59.0 47.0

Zhang, 2017 [41] 63.5 70.1 50.5 31.9 14.4 72.0 67.8 73.7 23.3 53.4 49.4 65.9 57.2 67.2 27.6 23.8 51.8 58.7 64.0 62.3 52.4

Mr = 0.9 56.4 71.9 46.0 32.6 34.5 70.9 69.1 73.3 32.6 65.2 46.4 69.7 74.0 67.0 59.3 24.6 55.2 49.9 66.4 67.2 56.6

Mr = 0.7 65.9 73.4 59.0 51.7 42.1 70.3 74.2 78.6 40.9 72.1 57.9 76.6 78.8 72.5 70.0 30.9 63.6 61.8 73.3 68.2 64.1

Mr = 0.5 68.1 78.0 61.7 51.7 50.4 74.8 78.4 82.1 46.9 72.6 63.3 78.2 80.9 72.7 74.9 36.4 64.4 67.9 71.7 70.1 67.3

Mr = 0.3 67.1 78.4 66.2 53.2 54.2 76.7 80.0 81.9 47.7 75.5 63.9 81.2 82.3 75.2 76.7 38.8 69.5 61.8 73.4 71.9 68.8

Mr = 0.1 69.1 78.3 70.3 54.6 56.1 78.5 81.2 82.3 52.9 73.3 66.9 80.7 83.3 74.6 77.4 43.0 71.0 66.1 74.2 72.6 70.3

Liu, 2016 [26] 75.4 82.3 67.4 61.6 41.7 80.9 82.2 80.3 49.2 71.9 68.6 82.1 83.5 80.4 75.9 46.6 69.6 73.4 82.0 70.1 71.2

Chen, 2017 [6] 67.6 78.9 67.6 55.2 56.9 78.8 85.2 83.9 49.8 81.9 65.5 80.1 84.4 75.7 77.6 45.3 70.8 66.9 78.2 72.9 71.2

Redmon, 2016 [29] 73.4 77.6 65.2 55.0 42.4 76.9 77.3 80.5 45.4 69.4 72.6 76.5 80.1 77.0 72.3 42.9 63.3 64.8 78.7 66.6 67.9

Girshick, 2015 [13] 77.4 78.3 68.6 59.7 37.5 80.0 78.3 83.8 43.8 74 67.8 82.9 80.0 76.6 67.9 35.7 69.4 69.8 77.7 67.5 68.8

improvement is that we also append accurate instance-level

labels in the training set and regress the object location.

In fact, these weakly supervised detectors can give a reli-

able classification probability, but not a precise localization.

WSOD only highlights the discriminative parts of objects

(e.g. face from human, nose from dogs, etc.), since it does

not have object boundary priors. When Mr = 0.9, only

very few bounding boxes are seen in training, and yet our

method improves upon W2F [41] by 4.2% in mAP. Clearly,

training the regression part of the model using ground truth

improves the localization accuracy.

Compare to FSOD Compared to the methods in the last

block in Table 3, our performance boost mainly comes from

two contributions. (1) We use image-level labels to predict

objects from the training set in two steps. Firstly we predict

instance-level labels from a well-trained detection model

before feeding the image to the network. Secondly, the im-

age labels are also applied to evaluate the current model

prediction. (2) The missing instance-level labels confuse

the model. A missing positive bounding box can be taken

to be a negative sample in training. Our method marks these

areas as positive samples and reduces the related loss.

4.5. Ablation Study

In this part, we first compares different methods dis-

cussed in Sec. 3.3 under different missing rates. Then, we

study the effects of the adapted modules with Mr = 0.7 to

validate the contribution of each modification. All models

are trained on PASCAL VOC 2007 train-val set and tested

on PASCAL VOC 2007 test set.

Basic Hybrid Supervised Architecture The light yel-

low curve in the plot of Fig. 4 shows the model perfor-

mance from the teacher-student training framework with

basic setup. Its accuracy is strongly depressed at low Mr

because of the imprecise pseudo labels. Also, it is approxi-

mately the same as WSOD at 0.8 and 0.9 missing rates. The

combination of ground truth and pseudo labels gives more

information to train the object detector, but a regular Faster-

RCNN could not learn from these priors appropriately.

More Adaptions to Missing Label Training To prop-

erly use ground truth, pseudo labels and image labels, we

adapted MID and ICR modules into our student model. The

table in Fig. 4 gives details when we cumulatively adding

this two modules to the RCNN model with Mr = 0.7.

Comparing the result given by Teacher-Student (T-S) train-

ing and MID branch, we can see that the performance does

not increase too much. However, when we introduce the

modified ICR module, the performance goes from 57.9%
to 59.1%. The feature map is encouraged to generate simi-

lar predictions from strong overlapped proposals. The dark

yellow curve of Repeated Teaching in the plot of Fig. 4 in-

dicates the overall improvement using both branches. Com-

pared to RCNN, the MID part less relies on pseudo labels,

and uses image labels to produce more reliable predictions;

it gives better reaction at most missing rates.

Repeated ”Teaching” As described in Sec. 3.2, repeat-

edly upgrading teacher model further improves the overall

performance. Our grey curve in the plot of Fig. 4 reaches

the original Faster-RCNN record when no bounding box is

missed and surpasses 4.2 percentage from W2F model at

Mr = 0.9. The bottom table also shows that this method

makes average precision for each class higher than before.

The improvement contributes to both the maintained ground

truth labels and the updated pseudo labels because unreli-

able pseudo object labels are frequently replaced by more

accurate ones.

4.6. Qualitative Results

In Fig. 5, we illustrate some detection results gener-

ated by our framework and compare them to those from

FSOD or WSOD models. The dataset missing rate is set

to 0.7. Faster-RCNN trained on the missing label dataset

will miss some objects, while W2F tends to highlight only

parts of objects. Our network combines labels from differ-

ent sources and makes full use of them to produce bounding

boxes that are tight and accurately classified.
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Table 4: Mean Average Precision of FSOD, our method and WSOD. Our baseline method successfully bridges between

the gap in performance between WSOD and FSOD. All of them are train/test on VOC2012 train-val/test dataset.

WSOD Missing Label Object Detection (Mr) FSOD

Tang[35] Zhang[41] 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Ren[30] Girshick[13]

42.5 47.8 52.3 56.8 59.9 62.0 63.6 64.6 65.3 66.1 66.9 67.0 65.7

Figure 5: Qualitative detection results of our method and two references (Faster-RCNN and W2F). Blue bounding boxes indicate

objects detected by our method, while red and green ones correspond to those detected by Faster-RCNN and W2F respectively. Mr = 0.7.

Faster-RCNN trained on the missing label dataset will miss some objects, while W2F tends to highlight only parts of objects. Our network

combines labels from different sources and makes full use of them to produce bounding boxes that are tight and accurately classified.

In Fig. 5 A4, FSOD predicts a tight green bounding box

around the man, while WSOD only detects the upper body

in the red bounding box. Our method in B4 is very sim-

ilar to the FSOD result. In C5, FSOD failed to find the

large flower pot, but WSOD can give a rough prediction.

Our model locates the plant with a tight blue bounding box

in D5. Line 3rd, 4th in Fig. 5 show images which have

multiple objects from different classes. Combining both

instance-level labels and image-level labels gives much bet-

ter results than using each label independently. Moreover,

we visualize some failed detection in B5 and D5, which

indicate that there is still much room for improvement.

5. Conclusion

In this paper, we study the missing instance-level label

problem in object detection and present a novel framework

for this task. Our pipeline combines the advantages of fully-

supervised and weakly-supervised learning. We first gener-

ate pseudo ground truth instance-level labels using weakly

supervised object detection method, and then train an end-

to-end missing label object detector. The pseudo ground

truth object labels are upgraded once the detector reaches

a better performance. Extensive experiments on PASCAL

VOC 2007 and 2012 compared the improvement between

fully and weakly supervised methods, and show that our

method stands out among all of them at different levels of

missing instance-level labels.
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